
GOLIATH

 onyx.org

Contents

Introducing Goliath

Architecture

Tokenization

Security

Economics

Tokenomics

Governance

Keeping Goliath Fair

Enterprise Features

Creating Trust

Potential Use Cases

Final Notes

07

13

25

39

43

47

50

55

57

62

66

73

••

•••

•••

•••

•••

••

••

••

••

•••

••

•••

Onyx.org 02

GOLIATH

Goliath is creating a secure and inclusive digital infrastructure that empowers individuals and

enterprises to interact, build, and transact with confidence. From financial grade products to

creative and commercial applications, our ecosystem ensures privacy, trust, and equitable

access for all.

Onyx.org 03

GOLIATH

Onyx.org 04

Distributed ledger technologies (DLTs) have the potential to transform industries at scale, but

realizing this promise requires overcoming five core challenges that currently hinder enterprise

adoption. A viable platform must deliver high transactional performance, formally verified

security, decentralized and expert-driven governance, enforceable mechanisms for systemic

stability, and robust tools for regulatory compliance. This whitepaper explores these critical

requirements and assesses how Onyx Goliath addresses them through a technically rigorous,

scalable, and trustworthy framework.

To support trillions in digital value transfer, public DLTs must withstand persistent adversarial

threats with mathematically proven consensus mechanisms, ensuring uncompromised security

without sacrificing decentralization. Compliance with evolving regulations, including GDPR and

sanctions enforcement, demands built-in identity and data governance capabilities.

At the same time, enterprise-scale applications require throughput of hundreds of thousands of

transactions per second and consensus finality within seconds, performance levels that exceed

those of most current platforms. Sustainable governance must be decentralized, globally

representative, and equipped with legal, technical, and economic expertise. Finally, long-term

stability depends on both resilient infrastructure and enforceable decisions that uphold

consensus and policy integrity.

Only through the convergence of these capabilities can a distributed ledger achieve the trust and

functionality necessary for widespread adoption in mainstream markets.

GOLIATH

Performance
Regulatory
Compliance

Stability

Governance Security

Onyx.org 05

Goliath is a public network and decentralized governance framework architected to meet the

technical, regulatory, and operational requirements of mainstream market adoption. The Goliath

network will be governed by the Onyx DAO (Decentralized Autonomous Organization) consisting

of XCN holders on the Ethereum ERC-20 Blockchain. These holders can shape the direction of the

Onyx DAO and Goliath through their participation in Onyx Improvement Proposals (OIPs).

This governance framework is designed to ensure a secure and trusted digital environment, one

that relies on decentralized entities rather than centralized entities exerting disproportionate

control. Decision-making authority is distributed among XCN holders, each possessing voting

rights over critical platform policies and technical direction proportionate to how many XCN

tokens they hold.

The Goliath network is a distributed ledger platform engineered to address the principal

limitations hindering mainstream adoption of public DLT systems. Goliath maintains platform

stability through a carefully designed combination of technical safeguards and Governance

frameworks, ensuring consistent operation and reinforcing trust across its ecosystem. Goliath

delivers near-optimal bandwidth efficiency, enabling the network to process hundreds of

thousands of transactions per second within a single shard, a tightly connected mesh of

peer-to-peer nodes.

Upon launch, Goliath is projected to handle approximately 100,000 cryptocurrency transactions

per second, with final consensus reached in seconds, setting a new performance benchmark far

beyond that of traditional public distributed ledger technologies.

Security is foundational to Goliath’s architecture. Goliath achieves asynchronous Byzantine Fault

Tolerance (aBFT), the highest known level of security for distributed consensus. Unlike other

protocols that rely on centralized coordinators, leaders, or timeouts which introduce

vulnerabilities to Distributed Denial of Service (DDoS) attacks, Goliaths leaderless model is

inherently resilient. This approach ensures robust security, even at scale, and marks a

significant advancement in the field of distributed systems.

Goliath also guarantees both Fair Access and Fair Ordering of transactions. It ensures that no

single participant can censor transaction submission or manipulate the transaction ordering in

consensus. Transactions are ordered according to their actual receipt times by the network,

preserving fairness in both inclusion and sequencing.

GOLIATH

Onyx.org 06

Goliath’s technical architecture supports two core capabilities essential for the secure and compliant

operation of a distributed ledger.

First, Goliath employs a shared state mechanism that enables software clients to verify the integrity

and provenance of Goliath before engaging with it. This mechanism prevents network nodes from

forking the official platform and propagating unauthorized modifications. In the event of divergent

changes to the original and a modified copy, clients can deterministically identify and reject the

invalid version, ensuring ledger consistency and tamper resistance.

Second, Goliath enables coordinated, deterministic software updates across all network nodes, as

specified by the Onyx DAO. This mechanism enables the Onyx DAO to specify the exact content and

timing of protocol changes and to verify their implementation across the network.

Upon release, updates are applied simultaneously to all participating nodes. Any node failing to

implement the authorized update is excluded from consensus participation and cannot propagate

an alternative ledger state, thereby preserving protocol uniformity and network integrity.

The Goliath codebase will be governed by XCN holders through the Onyx DAO and made publicly

available for review with the release of Version 1. Use of the Goliath platform will not require a license,

including for developing applications, integrating services, or deploying smart contracts. Developers

will be able to create either open-source or proprietary applications without seeking permission or

approval from the Onyx DAO.

The Goliath technical architecture incorporates controlled mutability of network state and supports

the attachment of supplementary data to transactions, including identity certificates. These

capabilities enable optional features, such as the deletion of personal data and the use of verified

identity mechanisms, all governed by the end-user’s consent. Goliath is committed to engaging with

regulatory bodies and promoting the development of tools that support enterprises in meeting their

consumer protection and regulatory compliance requirements.

This approach ensures transparency while enforcing the consistency and trust required for the broad

market adoption of a publicly distributed ledger.

The integration of these controls equips the DAO with the necessary mechanisms to enforce effective

governance and maintain protocol coherence. This framework establishes the operational and

regulatory stability deemed essential for the widespread adoption of the platform.

GOLIATH

Onyx.org 07

Introducing Goliath

GOLIATH

Onyx.org 08

The Goliath data structure and consensus algorithm constitute a novel framework for achieving

distributed consensus. This introduction outlines the operational principles of Goliath and

highlights its key properties. The primary objective of a distributed consensus algorithm is to

enable a network of participants, without mutual trust, to agree on the chronological ordering of

transactions. Goliath accomplishes this objective through a fundamentally distinct approach,

establishing trust in adversarial or trustless environments.

A blockchain functions as a linear structure analogous to a tree that undergoes continuous

pruning to prevent divergent branches and maintain a single authoritative chain of blocks. In

contrast, Goliath retains all information by integrating concurrent events directly into the ledger,

eliminating the need for pruning and preserving the full history of network activity.

In both blockchain and systems like Goliath, users can initiate transactions that are subsequently

encapsulated within a data structure, referred to as a “block” in blockchain systems, and

propagated across the distributed network for eventual inclusion in the shared ledger.

In blockchain systems, blocks are designed to form a single, linear chain of data. When multiple

blocks are produced concurrently, network consensus protocols dictate that one branch will be

selected for continuation. In contrast, the others are discarded to prevent a forked or divergent

ledger state. This process results in the continual elimination of alternative valid paths,

preserving only a singular, authoritative sequence of blocks.

With Goliath, all blocks of transactions are retained and integrated into the ledger, none are

discarded, resulting in greater efficiency compared to blockchain architectures. Rather than

eliminating concurrent event histories, Goliath preserves and merges them into a unified,

non-linear structure, ensuring that all valid contributions are permanently reflected in the

consensus.

Moreover, blockchain systems encounter limitations when new blocks are generated too rapidly,

as the resulting proliferation of branches can exceed the system’s ability to resolve them into a

single chain. To mitigate this, mechanisms such as proof-of-work are employed to constrain

block production rates artificially.

GOLIATH

In contrast, Goliath imposes no such restriction; the data structure accommodates rapid growth

without loss of information. All events are preserved, and participants may submit transactions

and event blocks freely without compromising consensus integrity or system performance.

Finally, because Goliath incorporates all transaction events without discarding potential forks, it

enables stronger formal guarantees than traditional consensus models. Specifically, Goliath

achieves Byzantine fault tolerance along with fairness in transaction ordering, capabilities not

simultaneously provided by other systems. While other protocols offer Byzantine agreement

without fairness, and blockchain provides neither, Goliath delivers a consensus framework that

is fair, Byzantine, high-performance, ACID-compliant, resource-efficient, cost-effective,

timestamped, and resistant to denial-of-service attacks.

Onyx.org 09

Throughput

Cost

Goliath achieves high throughput, constrained primarily by network bandwidth rather than

computational overhead. If each node possesses sufficient bandwidth to transmit and receive a

specified volume of transactions per second, the overall network can process a comparable

transaction load. In practice, even a standard high-speed residential internet connection can

support a Goliath node capable of handling transaction volumes comparable to those of

global-scale payment systems, such as the VISA network.

A Goliath-based distributed ledger offers significantly lower operational costs compared to

traditional blockchain systems, as it eliminates the need for energy-intensive consensus

mechanisms such as proof-of-work. Operating a Goliath node does not require investment in

specialized mining hardware; instead, nodes can be deployed on standard, commercially

available computing infrastructure, reducing both capital and energy expenditures.

GOLIATH

Onyx.org 10

Goliath achieves 100% efficiency as defined within the blockchain domain, wherein no

computational effort is wasted. In blockchain systems, resources are often expended on mining

blocks that are subsequently orphaned and discarded. In contrast, all transaction events in

Goliath are permanently incorporated into the ledger, eliminating such inefficiencies. The

protocol is also bandwidth-efficient: it requires only minimal additional overhead beyond the

basic dissemination of transactions to establish consensus timestamps and determine

transaction order.

Once a transaction is submitted to the network, all nodes reach a deterministic agreement on its

position within the transaction history within seconds, with finality and 100% certainty.

Crucially, each node also possesses common knowledge of this consensus state; that is, every

node knows that all other nodes have reached the same conclusion. As a result, the network can

apply the transaction’s effects immediately and, unless required for auditing or regulatory

compliance, discard the transaction data. In a minimal cryptocurrency implementation, this

allows nodes to maintain only the current balances of non-empty accounts without retaining the

complete transactional history back to the genesis block.

The Goliath network, governed by the Onyx DAO, is designed to decentralize progressively

over time, starting from a foundation of trusted node operators and evolving into a fully

permissionless ecosystem. Initially, the Onyx DAO Treasury will proxy-stake XCN to DAO-

operated nodes, while users may also delegate their stake to these nodes. As the network

matures, node operation will expand to include additional operators. While anonymous node

operators will not receive proxy stake from the DAO or default wallet configuration unless

sanctioned through additional Onyx Improvement Proposals, third-party wallets may enable

such delegation.

This staged decentralization strategy, supported by ongoing token distribution from the Treasury,

strategic incentives, and a growing pool of existing XCN holders aims to facilitate a competitive,

open market for proxy staking, where wallet providers and node operators compete to attract

stake in a fully decentralized environment.

Efficiency

Scaling

GOLIATH

Onyx.org 11

While XCN will still maintain its presence on Ethereum as an ERC-20 token with staking support

for DAO Governance, Goliath introduces new utility for XCN in the form of staking as it will utilize a

proof-of-stake (PoS) consensus mechanism with native XCN where a node’s influence on

consensus decisions is directly proportional to the amount of XCN staked to it.

A transaction achieves consensus when validated by nodes collectively representing more than

two-thirds of the total network stake. Ensuring that a substantial portion of the XCN supply is

actively staked on Goliath is essential to maintaining the integrity and liveness of the network.

In the network’s initial phase, the Onyx DAO Treasury will contribute by proxy-staking XCN to

select nodes, thereby enabling consensus formation while adoption increases.

As XCN becomes more widely distributed to nodes, mitigating the risk that any individual or

coordinated group could gain control of one-third of the total supply, the network will by default

operate under its permissionless design, allowing anyone to host a node. To participate, a node

must declare one or more accounts it controls and cryptographically prove ownership of the

corresponding private keys. The aggregate balance of those accounts determines the node’s

voting weight in the Goliath voting algorithm, and nodes are compensated based on this weight.

Importantly, staked XCN remains fully liquid. They can be spent at any time, thereby avoiding one

of the primary drawbacks of traditional bonded proof-of-stake systems, which often lock assets

and reduce liquidity.

Goliath also introduces proxy staking, a mechanism that allows users who do not operate nodes

to still contribute to consensus and earn rewards. By proxy staking, a user assigns their XCN to a

participating node, increasing the node’s stake weight.

The node’s rewards are then shared with the XCN owner that is proxy-staking. Proxy-staked XCN

remains entirely under the owner’s control, allowing them to withdraw, reassign, or spend them at

any time. Proxy staking does not grant the node spending authority.

Finally, all nodes must maintain a non-zero XCN balance to participate in consensus and to cover

transaction fees incurred when submitting messages to the ledger.

GOLIATH

Staking and Proxy Staking

Onyx.org 12Onyx.org 12

PROXY

STAKE

PROXY PAYMENT

PROXY

STAKE

NODE

GOLIATH

The diagram below shows the proxy staking model, where a node’s stake includes both the XCN it

owns and any XCN delegated to it by proxy stakers. Rewards from this combined stake are shared

between the node operator and proxy stakers. This allows users to earn rewards without running a

node, strengthens network security by distributing stake more broadly, and helps node operators

increase their revenue.

STAKENODE

PAYMENT

OWNER

PROXIED OWNER

Onyx.org 13

Architecture

GOLIATH

Onyx.org 14

The Goliath network is a multi-layered, modular system designed to support decentralized

applications at scale with uncompromising performance, security, and flexibility. Its architecture

is composed of distinct but interlocking layers, each responsible for a critical set of functions

ranging from secure message transmission to consensus, file storage, and programmable logic.

At its foundation, Goliath leverages conventional internet infrastructure while eliminating common

points of failure such as DNS, enabling resilient peer-to-peer connectivity. Above this transport

layer, Goliath’s consensus protocol establishes a deterministic, timestamped ordering of all

network transactions, ensuring data consistency across a decentralized node set.

On top of this core, the Services Layer introduces a suite of capabilities, native cryptocurrency,

smart contract execution, distributed file storage, and a high-performance consensus service, all

accessible via a unified API governed by the Onyx DAO, and in turn XCN holders. To support

scalability and real-time responsiveness, Goliath incorporates sharding and a consensus node

network that distributes read-access efficiently across the ecosystem.

Together, these components create a robust platform for building secure, auditable, and

high-throughput decentralized systems, suitable for applications in finance, identity, logistics,

IoT, and beyond.

GOLIATH

Onyx.org

Goliath network nodes are internet-connected computers that communicate over standard TCP/

IP protocols, with all data transmissions secured using Transport Layer Security (TLS). This

encryption protocol incorporates ephemeral cryptographic keys, which are generated for each

session and discarded afterward, providing perfect forward secrecy.

This means that even if a node’s long-term private key is compromised, past communications

remain secure and indecipherable.

15

DECENTRALIZED APPLICATION

GOLIATH NETWORK

WALLET

CRYPTOCURRENCY
SMART

CONTRACTS

FILE

SERVICE

CONSENSUS

SERVICE

INTERNET

Internet layer

GOLIATH

Onyx.org 16

Each node within the Goliath network is uniquely identified by its IP address and port number

rather than relying on domain names or the Domain Name System (DNS). By avoiding DNS

entirely, the network eliminates a significant point of vulnerability common in many distributed

systems, namely, DNS hijacking, poisoning, or other forms of name resolution attacks.

This architectural decision enhances the network’s resilience against censorship, surveillance,

and disruption, making it more robust and more challenging to tamper with or take offline using

conventional attack vectors.

Nodes in the Goliath network act as active participants in both the intake and distribution of

transactions submitted by clients. When a client submits a transaction to any node, that node

immediately begins disseminating the transaction to its peers through a fast and fault-tolerant

algorithm. This ensures that every valid transaction is rapidly propagated throughout the network

in a redundant and decentralized manner, making the system highly resilient to node failures or

network partitions.

Once transactions are widely disseminated, each node independently executes the Goliath

consensus algorithm, a deterministic protocol designed to establish a unified view of the

network’s history. Through this process, nodes collaboratively determine a consensus

timestamp for each transaction and reach an agreement on a definitive, total ordering of all

transactions across the network. This ensures that, regardless of when or where a transaction is

first received, all nodes reach the same conclusion about its place in the Goliath network.

After consensus is achieved, each node applies the transactions to its local copy of Goliath in the

exact order defined by the consensus. This synchronized application process updates the shared

state in a consistent and verifiable way. As a result, all nodes within a given shard maintain

identical views of Goliaths current state, ensuring complete data consistency and enabling

trustless coordination across the network.

Goliath Consensus Layer

GOLIATH

Onyx.org 17

The Goliath Services Layer represents the operational heart of the platform, a modular suite of

network-native capabilities built atop Goliath’s consensus protocol. These services expose core

functionality to developers and applications, enabling decentralized execution, secure storage,

digital asset management, and trustless event ordering.

Each service is designed to leverage the performance, fairness, and security guarantees of the

underlying consensus engine, while remaining flexible enough to support diverse enterprise and

public-sector use cases.

Goliaths native cryptocurrency is XCN. This bridged implementation of XCN is engineered for

high throughput and low latency, resulting in low transaction fees that make microtransactions

economically viable. Network participation will be open to any user, who may operate a node and

receive compensation for contributing to consensus.

Users can create accounts by generating a public-private key pair, with no requirement to

associate personally identifiable information such as a name or address. However, the platform

supports optional identity binding through the attachment of hashed identity certificates, issued

by third-party certificate or identity authorities selected by the user. This mechanism is intended

to facilitate regulatory compliance in jurisdictions requiring adherence to Know Your Customer

(KYC) or Anti-Money Laundering (AML) obligations.

Native Currency

DIGITAL ASSETS SMART

CONTRACTS

FILE

SERVICE

CONSENSUS

SERVICE

GOLIATH

Services Layer

Onyx.org 18

Goliath offers robust support for executing smart contracts written in Solidity, the industry-standard

programming language widely used across Ethereum-compatible ecosystems. Thanks to this

compatibility, developers can seamlessly deploy existing Solidity codebases, including extensive

libraries and complex smart contracts onto Goliath without the need for modification or refactoring.

This interoperability not only preserves the value of established tooling and frameworks but also

significantly accelerates the development and deployment of decentralized applications. As a

result, teams can leverage familiar development workflows while taking advantage of Goliath’s

performance and consensus guarantees.

Goliaths file system enables users to store data with network-wide consensus on both the

content and existence of each file. All nodes within a shard store identical copies, ensuring fault

tolerance and preventing data loss if any single node fails. Deletion permissions are enforced

through access control, allowing only authorized parties to remove stored data.

This functionality allows the file system to operate as a revocation service. For example, consider

a scenario where a professional certification body issues a digital accreditation to a licensed

engineer. A hash of the certification document, co-signed by both the certifying authority and the

engineer, is submitted to the ledger. Both parties are granted the right to remove the hash if

necessary.

To verify the credential, the engineer may present the certification file to an employer or client,

who can then check whether the hash remains recorded on the ledger. If the certification is later

revoked due to expiration or disciplinary action, the certifying body can delete the hash,

indicating the credential is no longer valid. If the engineer attempts to resubmit the hash without

the certifier’s signature, it will be evident that the entry was not authorized, and thus not a valid

representation of the original certification.

Files on the Goliath network are internally represented as Merkle trees, but developers interact

with them through a simplified interface. Goliath provides Java classes that abstract the

underlying structure, enabling developers to manipulate files as if working within a

conventional file system with directories, subdirectories, and files.

File Storage

Smart Contracts

GOLIATH

Onyx.org 19

Developers can rename directories, modify file contents, and perform operations like moving,

copying, and pasting. Behind the scenes, all changes are automatically structured and stored as

Merkle trees.

This architecture enables the platform to generate cryptographic proofs that a file is part of the

consensus state. Entire directory structures can be stored in this manner.

Additionally, Goliath supports Merkle Directed Acyclic Graphs (DAGs). This allows for

deduplication: when two files share identical byte segments, only one copy of the shared data is

physically stored, improving storage efficiency.

The Goliath Mesh provides a powerful, high-performance alternative to traditional smart

contracts and on-chain data storage, offering decentralized, trust-based ordering of events.

Through The Goliath Mesh, applications can submit messages to the Goliath public network,

where each message is deterministically timestamped and ordered using the Goliath Mesh

algorithm. This process ensures fairness, transparency, and cryptographic verifiability while

offloading commercial logic and data storage to external systems.

This dual-access model means files are both immutable and updatable, depending on how they

are accessed. Access by hash ensures permanence, while access by File ID ensures that the

latest version is always retrieved.

By hash, guaranteeing immutability,

since the hash directly reflects the

file’s contents.

By File ID, enabling mutability, as the

File ID can be redirected by the file’s

owner to point to a newer version.

Files can be accessed in two distinct ways:

The Goliath Mesh

GOLIATH

Onyx.org 20

The Goliath Mesh is part of the broader Goliath Network, a public distributed

ledger governed by the Onyx DAO composed of XCN holders and built on Goliath. Alongside

cryptocurrency, file storage, and smart contracts, The Goliath Mesh serves as a key network

service enabling decentralized consensus for various use cases.

Clients submit messages tagged with a thread ID to the Goliath mainnet. These messages,

containing data such as bids, logs, or event notifications, are distributed across nodes until

consensus is reached. Each message receives a consensus timestamp, sequence number,

and is incorporated into a running hash that provides a cryptographic fingerprint of all

messages for that thread.

Once consensus is established, the message and metadata are streamed to consensus nodes.

These consensus nodes are read-only and do not participate in consensus. They receive

messages from the mainnet, and depending on configuration, can store full transaction records,

selected threads, or even all consensus data, offering flexibility in data management.

This decoupled architecture empowers applications to process data off-chain while relying on

Goliath for trusted ordering. Developers can build commercial logic into consensus nodes or

application servers, using consensus timestamps to drive real-time operations or generate

cryptographic proofs of event ordering.

Goliaths Mesh architecture defines three roles.

Reach consensus and

assign timestamps to

messages.

Propagate, store, and

allow querying of

consensus messages.

They cannot submit

transactions or vote.

Maintain local state,

execute commercial

logic, and manage

access to decrypted

content.

Mainnet Nodes Consensus Nodes Commercial Nodes

GOLIATH

Onyx.org 21

A commercial application network may subscribe to a Goliath Mesh thread to receive and decrypt

encrypted messages. These networks benefit from Goliath’s decentralized ordering while

maintaining control over sensitive data and execution.

Goliaths Mesh is particularly well-suited for use cases where data privacy regulations, such as

GDPR, apply. In the Goliaths Mesh model, personal data is encrypted before being submitted to

the mainnet. The Goliath network stores this encrypted payload briefly (approx. 3 minutes), while

consensus nodes may store it longer. Because only commercial application nodes hold the

decryption keys, control over data access is preserved.

This architecture ensures that raw personal data is stored only where legally justified, while

consensus nodes retain encrypted, immutable records that support compliance through

cryptographic proofs. If deletion is required, commercial nodes may delete the data and keys,

rendering encrypted records effectively inaccessible while maintaining the integrity of the

consensus history.

The Goliath Mesh bridges the gap between public decentralized trust and private enterprise

control. It delivers fast, fair, and secure consensus without requiring full on-chain data storage,

dramatically reducing operational costs and complexity. Whether used in financial services,

healthcare, IoT, or identity management, Goliaths Mesh brings auditability, integrity, and

efficiency to distributed systems.

As adoption grows, Goliaths Mesh stands to become a cornerstone in the evolution of compliant,

scalable, and decentralized application infrastructure.

GOLIATH

Onyx.org 22

Despite their restricted role in consensus, Consensus Nodes may implement custom APIs to offer

enhanced services or tailored data access. The consensus network provides a scalable and

efficient mechanism for disseminating ledger state and transaction data to external clients and

distributed applications without burdening the throughput of the main network.

This architecture enables decentralized applications (dApps) to operate their own consensus

nodes, allowing them to monitor specific events, filter relevant transactions, and respond to

network activity in near real-time. For example, a dApp managing smart contracts may deploy a

consensus node to listen for contract-specific events, ignore unrelated data, and trigger

appropriate application logic in response.

GOLIATH

The Goliath consensus network comprises a set of nodes that replicate the core validation and

state-tracking functions of the main Goliath network while excluding the ability to influence

consensus or submit transactions. Consensus nodes participate in the network’s peer-to-peer

communication protocol, receiving all transaction data in real-time, performing signature

verification, and computing consensus outcomes. However, they do not create events and,

therefore, do not alter the structure of Goliath. As such, consensus nodes possess no voting

authority and are unable to submit transactions through the Goliath API, functioning

effectively as read-only nodes.

Consensus Network

Onyx.org 23

The Goliath network will initially operate as a single shard composed of a limited number of nodes.

As the network matures and more nodes join, it will evolve to support multiple shards, each

functioning independently to establish consensus. Sharding boosts performance by enabling

parallel processing, as each node processes only the transactions relevant to its shard.

Each shard contains a randomly assigned subset of nodes that maintain a consistent

shard-specific state, a portion of the full network ledger. These nodes utilize the Goliath

consensus algorithm to determine the transaction order within their shard.

Every shard can store accounts and files and execute smart contracts. Transactions that involve

only one shard (e.g., transferring XCN within that shard or storing a file) are processed

immediately upon reaching consensus.

To support cross-shard activity, the network implements trust-based inter-shard communication.

A transaction that spans multiple shards, such as moving cryptocurrency from an account in

shard X to an account in shard Y, triggers the generation of inter-shard messages. Each shard

maintains a queue of outbound messages tagged with sequence numbers to ensure ordered

processing. Messages are “pushed” by randomly selected nodes from the source shard to nodes

in the destination shard, accompanied by cryptographic proof of consensus.

The receiving shard verifies the message, checks its sequence number, and integrates it into its

consensus state if valid. Duplicate messages are ignored, and processing occurs strictly in

sequence. Once confirmation is received that a message has been processed, the source shard

removes it from its outbound queue.

Complex, multi-shard transactions (e.g., one-to-many or many-to-one transfers) may involve

atomic operations, such as placing “holds” on balances until all conditions are met. For example,

a transaction that transfers coins from two source accounts in different shards to one destination

account involves holds being placed on both sources. Only if all holds are successful are balances

updated and funds transferred to the destination. If any hold fails, all are released, and no transfer

occurs. This guarantees atomicity across shards.

Sharding

GOLIATH

Onyx.org 24

A master shard oversees node assignment, ensuring balanced stake distribution and periodically

reallocating nodes to shards. The system ensures no single node controls too much stake within a

shard, preserving Byzantine fault tolerance.

Finality is often achieved as quickly as consensus within the initiating shard. For most

single-source transactions, this means users can rely on near-instant certainty.

In more complex, multi-shard interactions, finality may take slightly longer due to required inter-

shard confirmations, but it remains efficient and secure.

By ensuring every inter-shard message is cryptographically bound to the consensus state of the

originating shard, the network preserves asynchronous Byzantine fault tolerance across the

entire platform. This architecture allows Goliath to scale horizontally while maintaining security,

consistency, and trust.

GOLIATH

Onyx.org 25Onyx.org

Tokenization

GOLIATH

Onyx.org 26

Before exploring how Goliath implements tokenization, it’s important to first understand several

foundational concepts, including the different types of tokens and the technical parameters that

define their behavior.

Fungible tokens such as stablecoins, governance tokens, and other value-pegged assets are

inherently interchangeable, with each unit holding equal value, much like the dollars in a bank

account. While every dollar might be represented digitally or tracked with different identifiers,

each functions identically in practice. These tokens are typically managed through account-

based models, where an account reflects a balance of indistinguishable units.

Thanks to their uniformity and simplicity, fungible tokens are ideal for high-throughput use cases

such as payments, rewards, and liquidity provisioning.

Non-fungible tokens (NFTs) are inherently unique, with each token distinguishable by attributes

such as a name, serial number, or embedded metadata. This uniqueness makes NFTs individually

identifiable and non-interchangeable. Often linked to specific digital or physical assets like digital

art, virtual real estate, or proof of ownership.

NFTs are typically implemented using a token-based model, where each token stands alone with

a defined owner. Due to their individualized nature, NFTs are best suited for lower throughput use

cases that involve high-value or asset-specific interactions, particularly in scenarios where

traceability and uniqueness are essential.

The range of token use cases continues to expand rapidly, touching nearly every industry from

finance and gaming to supply chains, identity, and governance. This growing diversity has shaped

the design of platforms like the Goliath Ledger, which supports multiple token types tailored to

distinct purposes and audiences. At one end of the spectrum are utility tokens, which grant

holders access to specific products or services such as cloud computing credits, event tickets, or

subscription-based offerings. At the other are security tokens, which represent ownership in

real-world assets like company equity, real estate shares, or other financial instruments. These

tokens are regulated and must comply with securities laws, as their value is directly tied to the

assets they represent.

Fungible Tokens

Non-fungible tokens (NFTs)

Use Cases

GOLIATH

Onyx.org 27

Another emerging category includes memecoins, which are often created for community-driven

engagement, experimentation, or entertainment. While they may lack intrinsic utility or asset

backing, memecoins frequently serve as cultural artifacts or social signals within digital

communities. Despite their lighthearted origins, some have demonstrated significant economic

impact and adoption. Together, these varied token types highlight the flexibility and breadth of

tokenization, enabling both practical and expressive use cases across permissioned and public

networks.

Once a token contract is developed and deployed, it results in the creation of a token that can be

transferred between accounts, typically as part of a commercial process or triggered event. Each

account’s balance and transaction history are captured within the overall state of the token

system.

A Token Contract is the code that defines a token’s roles, rules, and behaviors. It is typically

authored by the token issuer and made publicly accessible either by open-sourcing the code or

deploying it as a smart contract on a public network. This transparency ensures that the token’s

behavior is verifiable, eliminating the need to rely on opaque, third-party systems. Goliaths

approach to Token Contracts varies by deployment model.

States

Token Contracts

GOLIATH

Token state resides on permissioned

network nodes, which stay

synchronized using Goliath Mesh

messages published to a specific

thread.

Goliath Mesh

Token state is maintained on the

public ledger by Goliath mainnet

nodes.

Goliath Ledger

Onyx.org 28

A Token Contract is the code that defines a token’s roles, rules, and behaviors. It is typically

authored by the token issuer and made publicly accessible either by open-sourcing the code or

deploying it as a smart contract on a public network. This transparency ensures that the token’s

behavior is verifiable, eliminating the need to rely on opaque, third-party systems. Goliaths

approach to Token Contracts varies by deployment model.

Token Contracts

Accounts are uniquely identified entities such as public keys or user IDs that hold token balances

and can participate in sending or receiving tokens. These accounts may be controlled by

individuals, organizations, or automated systems. Depending on the use case, tokens can be

used for payments, access to services, or transferring ownership.

Accounts

Utilizes Goliath-native accounts

managed by the Goliath mainnet.

Relies on custom account

identifiers, typically public keys,

defined within the permissioned

network.

GOLIATH

The token contract is embedded

directly within the token’s

definition parameters.

The token contract is implemented

in application logic, executed by

permissioned nodes that maintain

the network state.

Goliath Ledger Goliath Mesh

Goliath Ledger Goliath Mesh

Onyx.org 29

Goliath supports two primary models for tokenization: the Goliath Ledger for issuing tokens

natively on the Goliath public ledger, and the Goliath Mesh for constructing permissioned

networks that synchronize state with publicly verifiable ordering.

These models offer distinct benefits tailored to different deployment scenarios, ranging from

public-facing stablecoins and NFTs to private, regulator-compliant asset networks.

Tokenization, the process of converting real-world assets or rights into digital representations on

a distributed ledger, is reshaping trillion-dollar industries from finance to supply chains. The

primary benefit of tokenization is the creation of more transparent, efficient, and accessible

markets.

Assets can be fractionalized, transferred, and settled with unprecedented speed and minimal

friction. As use cases for tokenization expand across securities, utility tokens, stablecoins, NFTs,

and more, the infrastructure supporting it must offer enterprise-grade performance, compliance

features, and low operational cost.

Goliath’s dual tokenization architecture addresses these demands through:

GOLIATH

Goliath Ledger for native

tokenization with high

throughput and decentralized

trust.

Goliath Mesh for customizable,

permissioned token networks

using Goliath’s consensus

ordering.

Onyx.org 30

The Goliath Ledger allows token issuers to define, issue, and manage tokens directly on Goliath’s

public mainnet. These tokens inherit key characteristics of the Goliath network: asynchronous

Byzantine fault tolerance (aBFT), finality in seconds, and low-cost transaction fees fixed in USD.

Goliath Ledger: Native Tokenization on Goliath

Key Features:

GOLIATH

Thousands of

token transactions

per second.

Transactions cost

less than $0.01.

Every transaction is

recorded in the ledger

and can be audited via

consensus nodes.

Unlike many

blockchain platforms,

Goliath’s consensus

does not fork.

TOKEN

High Throughput Low and Predictable
Costs

Public Verifiability No Forks

Onyx.org 31

The Goliath Ledger provides an API-driven interface that developers use to define token

properties. All tokens are issued as native objects on the network.

The Goliath Ledger supports a comprehensive set of on-chain operations that enable flexible and

secure asset management. Some of the transaction types available to token issuers and holders

include lifecycle actions such as creation and updates, supply control through minting and

burning, compliance features like KYC and token association, as well as advanced capabilities

like atomic transfers involving multiple tokens and XCN in a single transaction.

Name and

Symbol

Decimals

(degree of

divisibility)

Administrative Keys (optional):

freeze, wipe, KYC, and supply

manager roles

Initial Supply

Auto-renew Settings

Treasury Account

(holder of the

initial supply)

GOLIATH

API

Onyx.org 32

Consensus nodes track all activity on the Goliath Ledger, allowing third parties to independently

verify token balances, transfer histories, and metadata with full transparency.

These nodes are designed for ease of deployment and provide seamless integration support for

external systems such as wallets, custodians, and exchanges. By reflecting the consensus-

established state of the Goliath network, consensus nodes offer a decentralized source of truth

that enhances auditability and trust.

Additionally, they serve as a critical foundation for interoperability, enabling future

cross-network bridges and integration with other distributed ledger technologies (DLTs).

Create, Update,

Mint, Burn

Wipe and

Freeze/Unfreeze

KYC and

Association

Atomic Transfers

of multiple

tokens and XCN

GOLIATH

Onyx.org 33

The Goliath Ledger also features the Goliath API which is defined using protocol buffers and serves

as the interface for interacting with Goliath network services and functions. Publicly accessible

and designed for broad applicability, The Goliath Ledger API enables a wide range of commercial

and technical use cases.

The Goliath Ledger builds on existing network primitives, allowing users to create and interact with

tokens as native entities within the Goliath ecosystem. Like other Goliath entities such as

accounts, files, smart contracts, and threads, tokens are uniquely identified using the

shard.realm.num format. The Goliath Ledger introduces a new entity type: the token type

entity, which uses this same identifier structure.

Each Goliath account can hold XCN (the native cryptocurrency) alongside multiple custom token

types. However, accounts must explicitly opt in to each token type by signing and associating with

it before holding or transacting that token. XCN transfers remain independent of token

interactions, users can continue to send and receive XCN regardless of the other tokens held by

their account.

The Goliath Ledger API

GOLIATH

Ease of

Deployment

Interoperability

with future bridges

and other DLTs

Decentralized

Trust from the

Goliath network’s

consensus

Integration Support

with wallets,

custodians, and

exchanges

Onyx.org 34

The Goliath Ledger functions inherit Goliaths advanced key architecture, supporting flexible

configurations including single keys, key lists, threshold keys, and even nested key structures,

enabling fine-grained control over token issuance, management, and transfer.

In addition, The Goliath Ledger introduces new fields within transaction receipts, records, and

state proofs. These responses can be independently captured, verified, and stored by third

parties, allowing token operations to inherit Goliaths ABFT (Asynchronous Byzantine Fault

Tolerance) security model. Token transfer consensus is reached fairly, without the need for a

central leader, and transaction finality is achieved within seconds, resulting in an immutable,

verifiable log of token activity.

Consensus nodes receive updated record streams and account balance files that include token

balances and transfers for Goliath Ledger issued tokens.

Goliaths Mesh allows applications to submit messages to the Goliath network, which timestamps

and orders them using Goliath consensus. The ordered messages can then be consumed by

permissioned networks that maintain their own ledger state. This approach is ideal for use cases

requiring enhanced control, privacy, or jurisdictional governance such as regulated financial

markets or central bank digital currencies (CBDCs).

Goliath Mesh: Tokenization for Permissioned Networks

Architecture Overview:

GOLIATH

Clients submit

messages

(e.g., token

transfers) to a

specified Goliath

Mesh thread

Permissioned Nodes

apply application

logic (the token

contract) to update

their local state

Consensus Nodes

relay the message

stream to

permissioned

nodes

Goliath Mainnet

timestamps,

orders, and

cryptographically

verifies these

messages

Onyx.org 35

A token contract defines the core logic of a token, handling minting, burning, role management,

and permissions. Unlike the standardized model used in Goliath Ledger, Goliath Mesh supports

fully customizable contracts that can be tailored to meet specific commercial, regulatory, or

jurisdictional needs.

These contracts listen to a specific ThreadID on the Goliath Mesh, receiving ordered messages

that are validated against the token’s rules. Nodes execute the logic to update local state

verifying signatures, enforcing restrictions, and managing balances.

Beyond basic operations, contracts can support advanced features like atomic swaps, event

triggers, or oracle integration, offering both flexibility and consistency within a permissioned

environment.

Goliaths Mesh tokenization, known as the Token Message Standard, provides a foundational

approach for issuing, transferring, and managing digital tokens in a consistent and secure manner

across distributed networks. This standard ensures that all token-related messages are

well-structured and tamper-proof, enabling seamless synchronization among participating

nodes. It not only guarantees message integrity and interoperability, but also unlocks powerful

capabilities such as atomic swaps, hold-and-release mechanisms, and automated commercial

logic.

These features allow for complex transaction flows, regulatory compliance, and customizable

token behaviors, making the Token Message Standard a key enabler for enterprise-grade

tokenization and decentralized finance solutions.

The Token Message Standard provides a detailed and flexible framework for defining and

enforcing roles and behaviors within a tokenized system. These roles are optional and can be

selectively implemented based on the governance, regulatory, or commercial requirements of a

specific deployment. The design closely mirrors the capabilities of the Goliath Ledger but is

extended to support custom implementations, particularly within permissioned environments

using the Goliath Mesh. Through this model, token issuers can incorporate fine-grained controls

around token creation, distribution, compliance, and lifecycle management, all while maintaining

a consistent and interoperable taxonomy across network participants.

Token Contract

Token Message Standard

GOLIATH

Onyx.org 36

At the center of this system is the Administrator role. The Administrator is responsible for

initializing the token contract by defining core attributes such as the token’s name, symbol,

decimal precision, and which roles are enabled for governance. In addition to initial setup, the

Administrator has authority to update the token contract, including modifying role assignments,

changing governance policies, or rotating keys tied to specific roles. Any such updates require

not only the Administrator’s signature but also that of the new Keypair Owner, the entity

controlling the private key associated with the updated role. This dual-signature requirement

ensures deliberate and secure governance transitions. Administrators can also propose and

execute changes to other role-based keys (e.g., for the Supply Manager, Compliance Officer, or

Enforcement role), further enabling structured yet flexible control over the token’s lifecycle.

The Supply Manager role governs the creation (minting) and destruction (burning) of tokens. This

role is particularly useful for tokens that require dynamic supply adjustments, such as

stablecoins, securities, or programmable financial instruments. Supply Managers can also initiate

token transfers, allowing them to manage treasury operations, distribute rewards, or settle

internal flows. The token contract can be designed so that minting or burning is only triggered

under specific commercial conditions or events, ensuring that the supply logic aligns with the

broader operational context of the tokenized asset.

The Compliance role enforces the regulatory requirements of the token network. It provides

mechanisms to manage identity verification (KYC), freeze or unfreeze accounts, and remove or

reinstate compliance status. These capabilities are essential in environments where Anti-Money

Laundering (AML) regulations, sanctions enforcement, or access controls are required. Typically,

the Compliance role may be assigned to a trusted third-party provider, such as a financial

institution or compliance service, that performs identity verification and monitors for suspicious

activity.

The Enforcement role enables more direct intervention in token balances through a process

known as clawback. This is executed via a wipe transaction, which irreversibly removes a

specified number of tokens from a user’s account and simultaneously burns them from the total

supply. This function may be used in exceptional situations such as regulatory enforcement

actions, fraud recovery, or dispute resolution processes. The ability to revoke tokens directly

enhances the network’s responsiveness to legal and operational risks.

Lastly, the Token Holder is the most common and fundamental role in any token ecosystem.

Token Holders are end users or systems that own tokens and can transfer them up to the balance

they control. Each Token Holder manages access to their tokens through a cryptographic key pair,

enabling decentralized custody and user-level control without intermediaries. This role ensures

that participation in the network remains open and permissionless for users, while still being

governed by the rules enforced through the token contract.

GOLIATH

37

Altogether, the Token Message Standard offers a powerful and adaptable model for structuring token

systems. Its role-based architecture provides enterprises and developers with a comprehensive

toolkit for implementing secure, compliant, and commercial-aligned token functionality, whether in

public, permissioned, or hybrid network environments. By decoupling token behavior from rigid

infrastructure, it allows each role to be flexibly defined, updated, and enforced according to evolving

requirements, enabling sustainable token ecosystems with built-in governance.

The platform offers extensive customization options, allowing for jurisdictional constraints,

enhanced privacy, and seamless integration with enterprise blockchain frameworks.

Customization Possibilities

GOLIATH

COMPLIANCE

KEYPAIR OWNER ENFORCEMENT

TOKEN HOLDER

ADMIN SUPPLY

• Freeze/Unfreeze Token Holder Accounts

• Change KYC Status of Token Holder

• Accept Changes by Admin

 to Public Keys

• Wipe Tokens from

 Holders Accounts

• Transfer Token

• Change Asset Protection

 Public Key

• Change Supply Manage

 Public Key

• Initialize Token

• Propose Admin Public

 Key Changes

• Mint

• Burn

• Transfer Token

Onyx.org

Onyx.org 38

Token Nodes maintain ledger state, expose APIs for clients, and sync via Goliaths Mesh.

Onboarding new nodes involves deploying the token contract and subscribing to the relevant

thread. Nodes can reconstruct state from historical Goliaths Mesh messages via consensus

nodes. This has several benefits.

Goliath offers a powerful dual approach to tokenization through its two core services: Goliath

Ledger and Goliath Mesh.

Goliath Ledger provides the simplicity, speed, and transparency of public network deployment,

ideal for issuing stablecoins, loyalty points, and governance tokens that users can easily access

via Goliath wallets or integrated applications. In contrast, Goliath Mesh delivers the flexibility,

privacy, and custom governance required for complex enterprise use cases such as private

marketplaces, regulated financial networks, and supply chain consortia, offering full control over

token logic, onboarding, compliance, and data residency.

Both models are underpinned by the same core strengths: fast finality, aBFT security, and

predictable pricing. Whether launching consumer-facing assets or building sovereign-grade

token economies, Goliath provides the trusted infrastructure to do so with performance and

flexibility.

Token Node Operation

GOLIATH

Define bespoke token

behavior without

mainnet constraints

Sensitive data can

be encrypted and

handled only by

trusted nodes

High throughput

with decentralized

ordering

Determine who can

join and maintain

the network

Full Control Privacy Scalability Governance
Flexibility

Onyx.org 39

Security

GOLIATH

Onyx.org 40

All communications within the Goliath network are secured using TLS 1.2, and all transactions are

authenticated through digital signatures. The Goliath data structure itself is formed using

cryptographic hashes.

All cryptographic algorithms and key lengths implemented in the Goliath platform conform to the

Commercial National Security Algorithm (CNSA) Suite, the standard mandated for securing U.S.

government Top Secret information. These algorithms include RSA 3072 for digital signatures,

AES-256 for encryption, ECDSA/ECDH with the P-384 curve, and SHA-384 for hashing in addition

to using ephemeral keys for ensuring perfect forward secrecy.

The Goliath algorithm provides asynchronous Byzantine Fault Tolerance (aBFT), ensuring that no

individual node or colluding subset of nodes can prevent the network from reaching consensus or

alter it after finalization.

Each Goliath node deterministically arrives at a point of certainty, recognizing that consensus has

been definitively achieved across the network. In contrast, blockchain systems lack formal

Byzantine agreement guarantees; consensus is probabilistic and subject to reversal. Additionally,

blockchain protocols are not inherently resilient to network partitions, isolated subsets of miners

may independently extend conflicting chains, resulting in forks and inconsistencies in

transaction ordering.

It is important to clarify that the term Byzantine Fault Tolerant (BFT) is occasionally applied in a

weakened form to describe limited resistance to adversarial behavior in some consensus

protocols. In contrast, Goliath adheres to the original, stronger definition of BFT: even under

conditions where (1) a subset of malicious actors colludes to disrupt or distort consensus, and (2)

adversaries exert partial control over the network infrastructure, such as delaying or obstructing

message delivery, the system will still reach consensus, and all nodes will eventually have

certainty that consensus has been achieved.

Asynchronous Byzantine Fault Tolerance (aBFT)

Cryptography

GOLIATH

Onyx.org 41

Goliath satisfies this robust definition of Byzantine Fault Tolerance. Provided that malicious

entities control less than one-third of the total staked XCN, they cannot halt consensus,

manipulate transaction ordering, or bias consensus timestamps.

Byzantine Fault Tolerance (BFT) encompasses varying degrees of robustness, determined by the

underlying assumptions about network behavior and message transmission. Weaker forms of BFT

assume synchronous or partially synchronous networks with bounded message delays, while

stronger forms, such as asynchronous BFT, make no timing assumptions and tolerate arbitrary

delays in message delivery. The strength of a BFT protocol is directly correlated with its ability to

maintain consensus in increasingly adversarial or unpredictable network conditions.

The strongest form of Byzantine Fault Tolerance is asynchronous BFT, which ensures that

consensus can be reached even if adversaries have the capability to delay or selectively suppress

message transmission across the network. This model assumes only that more than two-thirds of

nodes behave honestly and that, over time, messages repeatedly sent between nodes will

eventually be delivered. Unlike partially asynchronous systems which rely on assumptions such

as fixed maximum message delays (e.g., ten seconds), asynchronous BFT remains secure even

under unpredictable network conditions. Partially asynchronous protocols may fail under

real-world threats such as botnets, Distributed Denial of Service (DDoS) attacks, or malicious

firewalls, as these can invalidate the timing assumptions critical to their correctness.

Goliath is ACID compliant when employed as the consensus layer for a distributed database.

ACID, Atomicity, Consistency, Isolation, Durability, defines a set of properties required for reliable

transaction processing.

Goliath enables a network of nodes to reach final consensus on the chronological order of

transactions. Once consensus is achieved, each node applies the transactions to its local

database instance in the same deterministic order. If the local databases conform to ACID

principles, the network as a whole functions as a unified, ACID-compliant distributed system.

In contrast, blockchain platforms lack definitive finality; because consensus is probabilistic and

reversible, they cannot guarantee ACID compliance.

ACID Compliance

GOLIATH

Onyx.org 42

One form of Denial-of-Service (DoS) attack involves an adversary overwhelming an honest

network node with superfluous or malicious messages, impairing its ability to process legitimate

traffic and fulfill its protocol responsibilities.

A Distributed Denial-of-Service (DDoS) attack escalates this threat by leveraging a large number

of compromised devices or public services to amplify the volume and reach of the attack, making

it significantly more difficult to mitigate and potentially disruptive to network-wide operations.

In a distributed ledger network, a Distributed Denial-of-Service (DDoS) attack may target the

nodes responsible for participating in the consensus process. By overwhelming these critical

nodes with excessive traffic, an adversary could impair their functionality or isolate them from the

network, thereby disrupting or delaying the establishment of consensus and compromising the

reliability and availability of the ledger.

Goliath is inherently resilient to Distributed Denial-of-Service (DDoS) attacks due to its fully

decentralized consensus architecture, in which no single node or subset of nodes holds

privileged roles or responsibilities in establishing consensus.

Similar to Bitcoin in its distributed structure, Goliath allows the network to remain operational

even if individual nodes are targeted and temporarily disconnected. For an adversary to

meaningfully disrupt the system, a large fraction of the network would need to be simultaneously

affected, which is significantly more complex and resource-intensive.

By contrast, alternative consensus models that rely on designated leaders, coordinators, or

round-robin schemes introduce structural vulnerabilities. In such systems, targeting the current

leader with a DDoS attack, and switching to each successive leader as they are elected can

effectively halt network progress while attacking only one node at a time.

Goliath circumvents this limitation by eliminating the need for leadership roles altogether,

thereby maintaining consensus integrity without incurring the energy costs associated with

proof-of-work mechanisms.

GOLIATH

Distributed Denial-of-Service Attack Resilience

Onyx.org 43

Economics

GOLIATH

Onyx.org 44

Users incur fees when utilizing the Goliath platform for operations such as cryptocurrency

transfers, data storage, or submitting transactions to the network.

Due to Goliath’s high-throughput architecture and the absence of proof-of-work, these fees are

expected to be significantly lower than those on many existing public distributed ledger

platforms.

Nodes participating in the Goliath network are compensated for the computational, bandwidth,

and storage resources they expend in supporting consensus and delivering network services. The

platform categorizes fees and payments into several distinct categories, each corresponding to

different aspects of network activity and resource consumption.

When a user or application initiates an action on the Goliath platform, it transmits the

corresponding transaction to a single node, which is responsible for submitting that transaction

to the network. This submission process incurs a small computational and energy cost for the

node. To compensate for this effort, Node Fees are paid. These fees serve both to reimburse

resource consumption and to incentivize nodes to perform this essential network function.

Initially, the Onyx DAO will set standardized Node Fee rates; however, over time, fee

determination will be delegated to individual nodes, allowing them to set their rates based on

market dynamics or service offerings. Node Fees are paid directly by the end user to the account

of the submitting node, providing a direct economic relationship between users and infrastructure

providers.

Once a transaction is submitted to the network, it is disseminated to participating nodes, which

first validate digital signatures and then temporarily store the transaction in memory while the

network reaches consensus.

Users pay a Network Fee to compensate nodes for the computational, memory, and communication

resources required to process and finalize the transaction within the consensus protocol.

Node Fee

Network Fee

GOLIATH

Onyx.org 45

The resource cost and thus the Network Fee may vary depending on factors such as the size of the

transaction payload and the number of associated digital signatures. Users pay Network Fees into

a Goliath Treasury account, from which a portion of the collected fees is distributed daily to

participating nodes as Node Reward Payments, reflecting their contribution to consensus

operations.

Service Fees are designed to compensate nodes for the ongoing resource commitments required

to maintain or support the outcomes of a transaction. For example, in the case of a file storage

transaction, all nodes are responsible for storing the file on persistent storage for a defined

duration. The Service Fee for such a transaction is calculated based on the file size and the

length of the storage period.

For transactions involving smart contract execution, the Service Fee reflects the computational

effort required to execute the contract and any additional storage costs associated with

persisting its results on the network. Users pay Service Fees into the Goliath Treasury account.

As with Network Fees, a portion of the collected Service Fees is redistributed daily to

participating nodes as Node Reward Payments based on their contribution to fulfilling

service-related responsibilities.

Goliath collects Service Fees and Transaction Fees on behalf of the nodes that execute

transactions and deliver associated services. These fees are aggregated into the Goliath Treasury

and are subsequently used to fund incentive payments to participating nodes. This ensures that

nodes are compensated proportionally for their contributions to consensus, computation,

storage, and other operational responsibilities across the network.

Service Fee

CLIENTS

NODE FEE

NE
TW
OR
K
FE
E

SE
RV
IC
E
FE
E

NODE PAYM
ENT

(Sent Daily)

NODE

GOLIATH

DAO TREASURY

Onyx.org 46

Once per day, incentive payments are distributed from the Goliath Treasury account to

participating nodes to compensate and incentivize their continued operation. To qualify for

payment, a node must meet availability thresholds established by the Onyx DAO, for example, by

contributing at least one event to 90% or more of the consensus rounds during the preceding

24-hour period.

Payments are proportional to the total amount of XCN staked to the node, including both the

node’s own stake and any proxy-staked XCN assigned to it by other account holders. The fee and

reward model is intentionally structured to align economic incentives, ensuring that costs,

participation requirements, and risks are distributed fairly among network participants.

The most significant resource expenses on the Goliath network such as file storage or smart

contract execution are covered by service fees, which must be paid upfront. For instance, if a

client wants to store a file for 30 days, they must prepay the full storage cost at the time the file

is created.

The smaller resource costs, including propagating transactions and reaching consensus, are

covered by network fees. When a node receives a transaction from a client, it first checks if the

account has enough funds to cover the fees. However, there is a minor risk: the account balance

might drop before the transaction is finalized, resulting in some network effort going

uncompensated.

To manage this, the system uses a transaction fee parameter set by the client, indicating the

maximum amount they are willing to pay. The receiving node conducts a precheck using a

published fee schedule that multiplies expected resource usage (e.g., bandwidth, CPU, storage)

by defined coefficients to estimate the actual fee. If the client’s balance and max fee are

sufficient, the transaction proceeds.

Once submitted, all nodes process the transaction, apply it to the consensus state if payment is

confirmed, and distribute the applicable fees accordingly.

Node Reward Payment

Nodes only compensated for

processing transactions correctly.

Clients only pay for

delivered services.

No services are performed without

payment, avoiding risk.

GOLIATH

Onyx.org 47

GOLIATHGOLIATHGOLIATH

Tokenomics

Onyx.org 48

GOLIATHGOLIATHGOLIATH

The XCN tokenomics model is designed to provide long-term economic sustainability, balancing

supply, utility, and incentives within the Onyx ecosystem. The distribution and allocation of XCN

ensure a structured approach to network growth, governance participation, and staking rewards.

XCN was issued with a fixed total supply at genesis, ensuring a predictable economic model

without the risk of unexpected inflation. The supply is carefully managed through governance

decisions, staking incentives, and controlled emissions. The total supply is structured to

support network incentives while maintaining scarcity over time. The current structure

of the XCN token is itemized below:

Predefined at initial deployment to ensure the amount does not exceed 68,892,071,757

units based on the prior conversions.

The current total supply of XCN stands at approximately 48.4B which has been reduced

from the initial max supply.

The amount of XCN in units currently in the market which is approximately 33.5B. This

number dynamically adjusts based on staking participation, token burns, and

emissions.

Implemented through transaction fees and governance-approved mechanisms to

maintain a total supply deflationary model.

Governance-driven mechanisms regulate token distribution to staking participants and

ecosystem contributors. The emission of XCN is regulated by on-chain and off-chain

mechanics to ensure a predictable distribution rate until total supply is reached.

XCN exists natively on Ethereum but can be bridged to base via Superbridge and BSC via

Wormhole. These bridged XCN tokens require onchain validation of the equivalent issued

amount to be locked to maintain transparency and to ensure conformance to the total

supply of XCN.

Max Supply

 Total Supply

Circulating
Supply

Burn
Mechanism

Emission
Control

Bridged Supply
Management

Onyx.org 49

GOLIATHGOLIATHGOLIATH

A portion of XCN total supply is allocated to the Onyx Treasury, managed by the Onyx DAO. These

funds are used to support protocol development, grants, liquidity incentives, and strategic

partnerships. The Treasury’s allocation is governed by on-chain voting, ensuring decentralized

oversight of fund utilization. Treasury-controlled funds may be deployed in:

Tokenomics parameters, including staking rewards, treasury allocations, and token burns, are

fully controlled by the Onyx DAO. The governance model ensures that token supply mechanics

evolve based on the needs of the network and economic conditions, balancing incentive

distribution with long-term sustainability. By maintaining a structured and governance-driven

tokenomics model, XCN ensures a sustainable economic framework for network participants

while aligning incentives for validators, stakers, and ecosystem contributors.

Supporting developers, research

initiatives, and infrastructure

improvements.

Funding technical improvements and

security audits.

Providing rewards to liquidity providers

across DeFi protocols integrated with

Onyx.

Engaging with institutional and DeFi

partners to drive adoption.

Ecosystem Grants

Protocol Upgrades

Liquidity Incentives

Strategic Partnerships

GOLIATHGOLIATHGOLIATH

Onyx.org 50

Governance

GOLIATH

Onyx.org

GOLIATH

Onyx.org 51

Onyx is governed as a DAO using the XCN ERC-20 token on Ethereum where holders can

participate in decisions relating to the protocol. Goliath expands governance further by using XCN

for governance of its network.

A governance model for a public distributed ledger must define the rules governing the evolution

of node software, the issuance and allocation of native tokens, and the incentive structures for

network participants. It must also account for and balance the interests of diverse stakeholders,

including node operators, developers, enterprises, end-users, and regulatory authorities.

Goliath utilizing XCN for governance means that each XCN holder holds equal voting rights with

the number of tokens that they hold determining their vote weight in the governance process.

This structure is designed to promote diversity of thought, operational transparency, and

institutional trustworthiness with a deliberate emphasis on decentralization, accountability, and

long-term sustainability.

To reinforce transparency and operational oversight, Onyx Improvement Proposals (OIP) are used

to ratify major changes to the overall Onyx DAO and Goliath as a network.

XCN serving as the governance token of the Onyx DAO means enabling decentralized, on-chain

governance where token holders can propose, vote on, and execute protocol changes. The

governance framework is implemented via smart contracts, ensuring a secure, transparent, and

permissionless decision-making process. All governance operations, including proposal creation,

voting, and execution, are automated and enforced by the governance contract deployed on

Ethereum.

Proposal

Creation

Voting Quorum/

Approval

Timelock

Execution

The Onyx DAO utilizes a structured on-chain governance mechanism, where governance weight is

determined by the amount of XCN staked. The governance contract enforces the following

workflow:

Onyx.org 52

• Any address holding at least 100,000,000 XCN in governance weight can submit proposals.

• Proposals can include protocol upgrades, economic parameter adjustments, treasury

 allocations, and smart contract modifications.

• The proposal payload must define the target contract address, function calls, execution

 parameters, and rationale.

• Proposals are initiated using the propose() function in the governance contract.

1. Proposal Creation

2. Voting Process

• Once submitted, proposals enter a 3-day voting period.

• Staked XCN determines voting power, meaning votes are weighted based on the amount

 of XCN committed to the governance contract.

• Participants cast votes using the castVote() function, which records votes

 onchain and tallies results in real time.

• The voting options are For, Against, or Abstain.

 3. Quorum and Approval

• A proposal is considered successful if it meets the approval threshold of at least

 200,000,000 XCN votes in favor.

• If the quorum is met and a majority vote is achieved, the proposal moves

 to the execution phase.

Onyx.org 53

GOLIATH

• Approved proposals enter a 2-day timelock, enforced by the governance contract

 to allow for final review.

• After the timelock expires, the execute() function is called, finalizing the

 proposal and enacting changes to the protocol.

 • The timelock contract prevents immediate governance takeovers, ensuring

 a secure and deliberate execution process.

The Onyx DAO governance logic is fully on-chain, defined by the governance smart contract

deployed on Ethereum. Key contract functions include:

// Function to create a new proposal
targets, values, signatures, calldatas, description
function propose(

) external returns (uint256);

// Function to cast a vote
Function castVote(uint256 proporsalId, uint8 support) external;

// Function to queue an approved proposal
Function queue(uint256 proporsalId) external;

// Function to execute an after timelock
Function execute(uint256 proporsalId) external;

Address[] memory targets,
uint256[] memory values,
string[] memory signatures,
bytes[] memory calldatas,

4. Timelock Execution

Onyx.org 54

GOLIATH

By participating in on-chain voting, staking XCN for governance weight, and submitting

proposals, token holders actively contribute to the evolution and security of the Onyx ecosystem.

 Implementing

improvements to

Goliath, optimizing

performance, and

enhancing security

throughout the

ecosystem.

Adjusting staking

parameters,

transaction fees, and

node incentives.

Modifying node rules,

consensus policies,

and other

configurations.

Protocol Upgrades Economic Policies Security Enhancements

Goliath’s consensus protocol is distinct from its governance structure. Initially, all consensus

nodes will be operated by the Onyx DAO to ensure consistency and security during early network

deployment. Over time, node participation will expand to include external operators, who will be

compensated for maintaining the Goliath network.

The open consensus model supports scalability and decentralization, with a long-term objective

of enabling a globally distributed network of potentially millions of nodes. Consensus influence is

determined by stake-weighted voting, wherein each node’s voting power is proportional to its

holdings of Goliath’s native cryptocurrency, XCN. This mechanism mitigates the risk of collusion,

protects against attacks such as double-spending or unauthorized ledger modification, and

ensures that no small set of actors can control transaction ordering.

The open consensus model of Goliath is designed to enhance trust, transparency, and resilience.

It provides the institutional accountability necessary for global adoption, while creating an

inclusive and decentralized technical infrastructure that everyone can participate in.

Open Consensus

These functions collectively enable decentralized governance, ensuring that proposals follow a

structured workflow from initiation to execution. The Onyx DAO is responsible for making critical

protocol decisions, including but not limited to:

Keeping Goliath Fair

GOLIATH

Onyx.org 55

Onyx.org 56

GOLIATH

Each transaction is assigned a consensus timestamp based on the median of the times reported by

nodes upon first receiving it. This timestamp is determined collectively, rather than unilaterally,

making it resistant to manipulation. Assuming more than two-thirds of participating nodes are

honest and operate with reasonably synchronized clocks, the resulting timestamp is both accurate

and Byzantine fault tolerant. This property is particularly relevant in contexts requiring verifiable

time-bound execution, such as regulatory deadlines or contractual obligations.

The final ordering of transactions is derived from their fair consensus timestamps. Because

timestamp assignment itself is fair and tamper-resistant, the resulting transaction order preserves

this fairness.

This is essential in applications such as financial markets, where transaction ordering can impact

market outcomes. Unlike blockchain systems where a miner can arbitrarily prioritize, reorder, or

exclude transactions within a block, Goliath ensures that ordering reflects network-wide agreement,

not individual discretion. Competitive advantage is limited to factors such as network latency, rather

than access to privileged consensus roles.

Fair Timestamps

Fair Transaction Order

Goliath provides fairness in consensus by eliminating centralized control over transaction ordering

and timestamp assignment. No node, including those participating in consensus, holds privileged

authority to determine when or in what order transactions are accepted. Instead, all consensus

decisions are made collectively through voting, embedded within the Goliath algorithm. This

decentralized structure supports three key dimensions of fairness:

Goliath is architected to provide inherently equitable transaction submission, ensuring that all

participants have a fair opportunity to interact with the network without bias or obstruction. Unlike

systems where centralized intermediaries or privileged nodes can influence message flow, Goliath’s

decentralized communication protocol prevents any single node from censoring or unduly delaying

the transmission of a transaction. Even in the presence of a malicious actor attempting to suppress

or stall dissemination, the protocol’s randomized peer-to-peer structure ensures that the

transaction rapidly finds alternate paths through the network.

This design preserves liveness, enhances robustness, and offers strong resistance to localized

disruptions or targeted interference, safeguarding the open and inclusive nature of the platform.

Fair Access

Onyx.org 57

Enterprise Features

GOLIATH

Onyx.org 58

Goliath is designed with enterprise-grade capabilities at its core, offering a feature set tailored to

meet the complex requirements of regulated industries and large-scale organizations. From

compliance-enabling tools like controlled mutability and opt-in identity verification to robust

governance, privacy management, and real-time auditability through consensus nodes, Goliath

provides the infrastructure necessary for businesses to operate confidently in demanding

regulatory environments. These features position Goliath as a robust foundation for enterprises

seeking secure, compliant, and scalable distributed applications.

It is anticipated that governments will continue to impose regulatory and policy requirements on

users, enterprises, and developers operating on public ledgers and engaging with associated

cryptocurrencies and tokens. A core objective of the Goliath network is to provide the technical

capabilities and governance structures necessary to support compliance with applicable legal

and regulatory frameworks, including established regimes such as the European Union’s General

Data Protection Regulation (GDPR) and anti-money laundering (AML) standards.

Goliath is committed to ensuring the platform remains adaptable to evolving legal requirements.

As with most distributed ledger technologies, all transactions that modify the state of a Goliath

account must be authorized by a digital signature generated using the account’s private key. This

ensures that end users who maintain control of their private keys retain exclusive authority over

their accounts and assets. At no point does Goliath, or any associated developer or enterprise,

assume custody of user funds.

Cryptocurrency transfers on the Goliath network are executed in a fully peer-to-peer manner,

with no intermediaries required to hold or transfer XCN on behalf of users. Developers have the

flexibility to implement self-custody solutions, enabling users to manage their own private

keys, or to offer custodial services, in which case they must adhere to all relevant regulatory

requirements associated with the management of user assets.

Regulatory Compliance

Self-Custody

GOLIATH

Onyx.org 59

Unlike most distributed ledger platforms, Goliath supports controlled mutability, enabling data

modification or deletion under predefined conditions. When data is submitted to the network, the

publisher may specify an authorization policy that designates which cryptographic keys are

permitted to modify or remove the data in the future.

This feature allows developers to design applications that comply with regulatory requirements

such as the “right to erasure” under the European Union’s General Data Protection Regulation

(GDPR). It also enables users to retain granular control over the visibility and persistence of their

data, supporting flexible data governance within a decentralized framework.

The Goliath network provides a flexible identity management framework that allows users to

maintain control over their identity and transaction requirements.

By default, accounts are pseudonymous, consistent with most distributed ledger systems.

However, the Goliath architecture supports future implementations that enable users to bind

verified identity attributes issued by a trusted Certificate Authority to their ledger accounts.

This capability facilitates compliance with Know Your Customer (KYC) and other regulatory

requirements. Counterparties may condition transaction acceptance on receiving proof of

specific identity attributes (e.g., legal name, age, or jurisdiction) in accordance with their

compliance obligations. Users retain full control over their personal information, deciding

whether to disclose identity proofs or attributes on a per-transaction basis.

The system operates on an opt-in model. Users must explicitly choose to associate their

real-world identity with their account. Those who elect not to participate will retain

pseudonymity, though doing so may restrict access to regulated services or

counterparties that require verified identity for transaction acceptance.

Data Self Sovereignty

Privacy Management

GOLIATH

Onyx.org 60

Comparable to presenting a verified employee ID when accessing a secure facility, Goliaths

model enables users to attach a hash of a digital certificate created by a recognized identity

provider to their account. This attachment takes the form of a transaction sent to the network.

This transaction:

As long as the binding between an account and its associated certificate remains active i.e., not

revoked by either the user or the identity provider, it can serve as verifiable evidence that the

account is linked to a known individual whenever funds are transferred into or out of that account.

If necessary, the identity provider may revoke this binding by submitting a signed transaction to

the network.

Government

oversight

Security Individual privacy

1. May require authorization from both the user’s private key and the identity provider’s key

2. Can define which entities are permitted to subsequently access or verify the certificate

GOLIATH

Onyx.org 61

For illustrative purposes, consider a user attempting to transfer funds from their Goliath account

to a U.S. bank. The user would supply the bank with the digital certificate and their account

address. The bank would verify that the account contains the corresponding hash of the

certificate and confirm that the certificate was issued by a recognized and trusted identity

authority. Only upon successful validation of these elements would the bank authorize the

transaction and accept the funds.

In accordance with regulatory obligations, the bank may be required to report the certificate

and transaction details to the appropriate government authority, either in real time (e.g., for

high-value transfers) or according to a predetermined reporting schedule.

Certain developers and enterprises operating on the Goliath network may be subject to

anti-money laundering (AML) reporting obligations. For these entities, a compliance framework

can be constructed using on-network identity certificates in conjunction with network data

accessed via consensus nodes. Consensus nodes are designed to function as read-only

observers of network activity and, in the long term, may be operated by any participant. These

nodes enable the collection, storage, and analysis of public transaction data, facilitating

investigations and the identification of potentially suspicious behavior.

Goliath is committed to working with the broader distributed ledger technology community and

regulatory bodies to ensure that compliance obligations can be met without compromising

privacy or security.

The Goliath consensus algorithm and data structure deliver a uniquely strong combination of

throughput and fault tolerance. Through the Goliath platform and Onyx DAO, the network offers

transparency, open innovation, long-term stability, opt-in identity and compliance mechanisms,

and governance informed by cross-industry, globally distributed expertise.

Anti Money-Laundering

GOLIATH

Onyx.org 62

Creating Trust

GOLIATH

Onyx.org 63

All nodes in the Goliath network maintain a complete and synchronized copy of the current ledger

state, for example, the balances of all cryptocurrency accounts. At the conclusion of each round

of consensus, every node independently computes the updated state by processing all

transactions finalized during that round and all preceding rounds. Each node then generates a

cryptographic hash of the resulting state, signs it digitally, embeds the signature in a transaction,

and disseminates it to other nodes. Nodes subsequently aggregate these signatures to establish

collective validation of the shared state.

When a client queries any component of the state, nodes can construct and return a compact

proof file containing the aggregated signatures and accompanying cryptographic artifacts. This

allows the client, or any third party, to verify that the returned data corresponds to the consensus

state recognized by the entire network.

The state itself is structured as a Merkle tree, enabling efficient and verifiable proofs. A third party

can be provided with a Merkle proof consisting of a minimal subset of state data, the Merkle path

to the root (including sibling hashes), the set of digital signatures over the root hash, and the

historical address book necessary to verify public keys. This cryptographic construct allows the

verifier to confirm that the state fragment is authentic and consistent with the globally

agreed-upon network state.

NODE

TRUSTED STATE ACCESSIBLE

BY THIRD PARTIES

GOLIATH

Signed State Proofs

Onyx.org 64

The cryptographic proof provided by a Goliath node will include an address book, which contains

the public keys of all participating nodes along with their associated stake. This address book is

essential for any third party to verify the digital signatures affixed to the state or subset of the

state returned by a node.

To ensure verifiability over time, the proof also incorporates an address book history, a sequential

chain of address books, where each version is digitally signed by nodes from the immediately

preceding address book. The validity of each address book in the sequence is contingent on being

signed by a supermajority (more than two-thirds) of the total stake, as recorded in the prior

address book. This recursive signature structure forms an unbroken chain of trust that extends

back to the genesis address book, which was signed by the initial cohort of nodes at the ledger’s

inception.

The hash of the genesis address book serves a critical function: it acts as a cryptographic anchor

and globally unique identifier for the ledger. It defines the origin and identity of the network and is

used to establish continuity and authenticity across the entire address book history. This

mechanism ensures that clients and third parties can verify not only the current state, but also

the historical legitimacy of the network’s consensus framework.

Ledger ID

NODE

NODE

NODE

GOLIATH

Onyx.org 65

If a small subset of nodes attempts to fork the Goliath network by creating a new ledger based on

the current state, they may be able to replicate the data and initiate a technically valid fork.

However, they will be unable to reproduce the address book history that links back to the genesis

address book, as the majority of nodes, those not participating in the fork, will not sign the

subsequent address books of the forked network. This means the forked ledger must generate a

new genesis address book, and thus a new unique identifier, effectively establishing it as a

distinct and unrelated network. As a result, the fork cannot masquerade as the original ledger.

When a client submits a transaction to the Goliath network, the node responds with a

cryptographic proof demonstrating that the transaction was incorporated into the consensus

state. In the case of value transfers, both sender and recipient receive verifiable confirmation that

the transaction succeeded. This proof includes a signed chain of state hashes extending back to

the genesis address book, thereby validating not only the transaction’s correctness but also its

association with the authentic ledger.

In the event of a hypothetical 50/50 network split by stake, neither resulting group would be able

to generate a continuous, signed address book history to the original genesis. Rather than a fork,

this would constitute a full network deconstruction, yielding two entirely new and independent

ledgers. This would destroy continuity, invalidate the original currency, and severely reduce the

value of the network, as neither group could claim legitimacy or retain access to the original client

base. The resulting loss of transaction fees and market trust provides a powerful economic

disincentive against forking.

Thus, Goliath’s technical architecture and cryptographic mechanisms make it practically

impossible to create a deceptive or ambiguous fork. Illegitimate copies cannot produce valid

state proofs and will be immediately identifiable as such.

Users can unambiguously verify that they are interacting with the authoritative ledger. Moreover,

these same mechanisms are essential for enabling secure sharding, allowing different shards to

exchange authenticated messages, each with proof that the message originates from the

consensus of its source shard. This ensures consistency and trust across a multi-shard

ecosystem.

Handling Forks

GOLIATH

Onyx.org 66

Potential Use Cases

GOLIATH

Onyx.org 67

Goliath is a powerful consensus infrastructure designed to bring transparency, fairness, and

tamper resistance to digital systems across industries. By providing cryptographic timestamping,

deterministic ordering, and decentralized verification through consensus nodes, Goliath enables

a wide range of high-integrity applications, from finance and legal records to healthcare,

governance, and supply chain management. Its ability to integrate seamlessly with existing

systems while offering provable audit trails and regulatory compliance positions it as a

foundational layer for trust in both public and private digital ecosystems.

Underpinning all these capabilities is a design focused on privacy, data governance, and

regulatory compliance. Goliath’s Consensus Service maintains data immutability by anchoring

encrypted records to decentralized consensus nodes, while ensuring that sensitive personal data

remains securely within commercially-controlled environments.

This architecture allows organizations to comply with right-to-erasure mandates by deleting

associated encryption keys without compromising auditability. Data residency is preserved,

giving enterprises full control over where decrypted data is stored and who can access it.

Importantly, Goliath nodes, including consensus nodes, never access unencrypted personal

information. This makes Goliath uniquely suited for GDPR-aligned deployments and

enterprise-grade privacy requirements, enabling decentralized trust without sacrificing

localized data control.

The following sections explore how Goliath empowers specific use cases across key domains.

Goliath makes it possible to achieve low-cost, high-speed international remittances and

settlement across banks, remittance platforms, and mobile wallets. Its deterministic finality and

consensus timestamps make it possible to provide cryptographic proof of transaction time and

ordering, supporting regulatory audits and reconciliation.

By enabling high throughput for mass transfers, leveraging asynchronous Byzantine Fault

Tolerance (aBFT) for tamper resistance and finality, and offering fair timestamps for compliance

and fee settlement, Goliath opens the door to a more efficient and transparent global financial

ecosystem.

Cross-Border Payment Infrastructure

GOLIATH

Onyx.org 68

Goliath makes it possible to store hashes of official records such as land titles, birth certificates,

commercial registrations, and judicial rulings for long-term, tamper-proof verification. It enables

public verifiability without exposing the underlying data, ensuring transparency while preserving

privacy.

With support for provable deletion, Goliath also makes it possible to comply with right-to-erasure

regulations. Through permissioned integration using its Consensus Service, it allows for

jurisdictional control, making it a strong fit for government and institutional use cases that

demand both security and regulatory alignment.

Participants can submit bids and asks to Goliath Mesh, gaining a new level of fairness through

precise, timestamp-based sequencing. This ensures that every order is recorded and processed

in the exact order it was received, eliminating front-running and manipulation.

Consensus nodes then organize and process these orders by thread, enabling order-matching

logic to follow a transparent, verifiable, and tamper-resistant sequence of events, laying the

groundwork for more trustworthy and efficient marketplaces.

Goliath can be used to record votes and proposals for DAOs, public elections, corporate

governance, or university boards, ensuring both the integrity of vote ordering and the privacy of

participants. Its fair ordering mechanism guarantees that votes are counted in the exact

sequence they’re received, eliminating disputes around timing and manipulation. Transparent

consensus nodes offer real-time auditability, allowing stakeholders to independently verify the

process.

Additionally, Goliath supports advanced features like proxy delegation and identity-verification

mechanisms, making it a versatile foundation for secure and accountable decision-making across

a wide range of governance models.

Government and Public Records Systems

Decentralized Stock Markets

Decentralized Voting and Governance Auditing

GOLIATH

Onyx.org 69

Goliath Mesh enhances decentralized identity frameworks by providing trusted, tamper-resistant

timestamps for identity-related artifacts. While the actual identity data remains securely stored

within commercial-controlled systems, Goliath ensures that the ordering and verification of these

events is handled through a decentralized and transparent layer.

This separation of concerns allows organizations to maintain control over sensitive data while

benefiting from the trust, auditability, and integrity that Goliath’s consensus layer brings to

identity ecosystems.

Goliath can be used to timestamp and verify critical trade documents such as invoices, bills of

lading, and letters of credit, helping reduce fraud, accelerate early payments, and enable

automated settlements through smart contracts.

Its Consensus Service provides tamper-proof sequencing, ensuring that every document is

recorded in an immutable, verifiable order. Provenance trails created through this process offer

powerful tools for risk mitigation and compliance, while consensus nodes support seamless

cross-organization integration, allowing multiple stakeholders to share a trusted, real-time view

of trade workflows.

Businesses can leverage Goliath Mesh to record consent grants and withdrawals, creating a

verifiable, timestamped history of data processing agreements. This ensures that consent

management is not only transparent but also provably compliant with regulatory requirements.

In scenarios requiring provable deletion, key steps in the data removal process can be logged to

Goliath Mesh, establishing an auditable, tamper-resistant timeline. This approach strengthens

accountability and trust in data governance by providing clear evidence of when and how

data-related actions were taken.

Decentralized Identity

Trade Finance and Invoice Factoring

Consent Receipts and Provable Deletion

GOLIATH

Onyx.org 70

Universities, training platforms, and certification bodies can use Goliath to timestamp, verify, and,

when necessary, revoke digital credentials, ensuring long-term trust and authenticity.

Goliath supports optional revocation and deletion, allowing institutions to manage credentials

flexibly while maintaining compliance. Its privacy-preserving design enables proof-of-existence

without revealing sensitive information, protecting learners’ identities. Backed by Merkle

tree–based storage, Goliath offers scalable, efficient verification, making it ideal for large

volumes of credentials across diverse education and training ecosystems.

Goliath can be used to deploy escrow smart contracts with built-in transparency, where audit trails

are clear and conditions are enforced by consensus-based ordering. Timestamps provide a reliable

mechanism to resolve disputes, ensuring clarity around who acted first in any transaction.

Goliath’s fair ordering eliminates the risk of timestamp manipulation, while deterministic state

proofs enable trusted third-party arbitration when needed. With secure contract logic written in

Solidity and backed by Goliath’s Consensus Service, parties can engage in escrow arrangements

with confidence, knowing that every action is verifiable and tamper-resistant.

Goliath ensures tamper-proof logging of in-game events, player rankings, and match outcomes,

helping to prevent cheating and manipulation in esports and play-to-earn ecosystems. Its

consensus-based timestamps guarantee fair and transparent sequencing, so every action is

recorded exactly as it occurred.

With high throughput, Goliath can support real-time gaming environments, while its secure off-

chain storage combined with verifiable ordering ensures that performance and integrity go hand

in hand. This creates a trusted foundation for competitive and reward-driven digital gameplay.

Credentialing and Education Verification

Escrow and Dispute Resolution

Fair Play in Online Gaming

GOLIATH

Onyx.org 71

Goliath can be used to track consent, access logs, and critical events within Electronic Health

Records (EHR) systems, ensuring transparency and accountability without compromising

sensitive patient data. By logging events with precise timestamps, Goliath supports compliance

with HIPAA, GDPR, and other regulatory frameworks, offering a clear audit trail for every

interaction.

Sensitive data remains under the control of commercial systems, while Goliath’s decentralized

consensus nodes provide external, immutable verification. This separation of data control and

auditability creates a powerful foundation for secure, privacy-preserving healthcare data

management.

Goliath Mesh can timestamp sensor readings and asset handoffs across global supply chains,

creating a trusted and tamper-resistant record of events. This verifiable timeline supports

compliance with regulatory standards, enhances provenance tracking for quality assurance and

sustainability claims, and enables automation through smart contracts that react to real-world

conditions.

By anchoring key supply chain events in a decentralized, transparent layer, Goliath brings new

levels of trust, traceability, and efficiency to even the most complex logistics networks.

Goliath can be used to timestamp, order, and publicly audit environmental actions such as carbon

offset events or broader ESG-related disclosures. By anchoring these actions to a transparent yet

secure proof layer, Goliath enables trusted accountability without compromising sensitive data.

It supports verification by multiple stakeholders, allowing regulators, NGOs, and investors to

independently confirm the timing and authenticity of reported activities. With tamper-resistant

audit trails, Goliath helps build confidence in ESG commitments and fosters greater transparency

across sustainability-focused initiatives.

Healthcare Data Audit Trails

IoT and Supply Chains

Real-Time ESG and Carbon Credit Tracking

GOLIATH

Onyx.org 72

Goliath Mesh supports secure and transparent ordering for tokenized assets, making it ideal for

maintaining integrity across complex digital asset ecosystems. For example, Goliath can be used

to record token transfers with fair sequencing, ensuring that transactions are processed in the

exact order they occur.

This decentralized ordering layer preserves cross-network consensus integrity and prevents

manipulation. Additionally, atomic swaps between different ledgers can be reliably triggered

based on Goliath-assigned timestamps, enabling seamless, trustless interoperability across

blockchain platforms.

Goliath could be used to timestamp legal agreements, contracts, and notarized documents,

creating decentralized evidence chains that support court admissibility and long-term legal

integrity. Its immutable sequence logs ensure that every action whether signing, amendment, or

revocation, is recorded in a verifiable, tamper-proof order.

Goliath also supports provable deletion, allowing expired or voided contracts to be clearly marked

while maintaining an auditable history. With built-in support for digital signatures and identity

linkage via consensus, Goliath offers a secure, transparent foundation for managing legally

binding records in a decentralized world.

Financial Systems and Token Transfers

Legal Document Provenance and Smart Contracts

GOLIATH

Onyx.org 73

Final Notes

GOLIATH

Onyx.org 74

To support adoption and integration of the Goliath protocol, a full suite of developer resources will

be published in coordination with the network’s official launch. These resources will include:

All technical documentation will be hosted on a modular, versioned documentation portal that

supports live updates, code snippets, and version tracking to ensure alignment with protocol

upgrades and implementation milestones.

This documentation is designed to meet the requirements of both independent developers and

enterprise engineering teams seeking to integrate Goliath-based infrastructure. Its release

schedule will align with the final testnet evaluations and production readiness milestones.

Precise API specifications for interacting

with Goliath Ledger and Goliath Mesh,

including message formats, transaction

types, and endpoint definitions.

Supported SDK libraries and language

bindings for common development

environments.

Formal interface definitions for clients,

indexers, and relay services interacting

with Goliath nodes and subnets.

Reference implementations and contract

templates for token issuance, transfer

logic, and access control models.

Integration guides and architecture

patterns for building application-layer

services on top of Goliath.

GOLIATH

